Introduction to Quantum Advantage

QCRG – 6th Meeting 3 December Samar Aseeri, PhD

What is Quantum Advantage?

- Definition: Performing tasks on quantum computers that are beyond the reach of classical computers
- Current Achievement: Random circuit sampling experiments have demonstrated quantum advantage in specific tasks:
 - More than 100 qubits and 40 layers of two-qubit gates
 - Google Quantum Al's Willow processor (103 qubits)
 - IBM Quantum's Heron processor (5000 gates)
- Limitation: These demonstrations are important milestones but not of great practical interest yet

The Road to Practical Quantum Advantage

- Current State: NISQ (Noisy Intermediate-Scale Quantum) devices:
 - Limited by error rates and qubit counts
 - Can execute fewer than 10⁴ two-qubit operations
- Future Goal: FASQ (Fault-Tolerant Application-Scale Quantum) machines:
 - Target: ~10¹² operations (a 'teraquop')
 - Will pass through 'megaquop' (~10⁶), 'gigaquop' (~10⁹) regimes
- The Gap: The transition is described as 'arduous, expensive, and prolonged'

Key Challenges to Overcome

- 1. From error mitigation to active error detection and correction
- 2. From rudimentary error correction to scalable fault tolerance
- 3. From early heuristics to mature, verifiable algorithms
- 4. From exploratory simulators to credible advantage in quantum simulation

Potential Applications

- Optimization Problems:
 - VQAs
 - QAOA
- Machine Learning:
 - Quantum neural networks
 - Quantum-enhanced training algorithms
- Quantum Simulation:
 - Strongly correlated matter
 - Chemical compounds and exotic materials
 - Static and dynamical properties of quantum systems

Timeline Expectations

- Early Applications: Primarily scientific exploration
- Near-Term: Scientific value before economic impact
- Long-Term: Broader economic and societal benefits
- Key Insight: 'Quantum utility will unfold gradually, fueled by advances in both technology and theory'

Reference

- [1] J. Eisert and J. Preskill, "Mind the gaps: The fraught road to quantum advantage," arXiv:2510.19928v2, Nov. 4, 2025. [Online]. Available: https://arxiv.org/abs/2510.19928v2
 [2] S. K. et al. (Google Quantum Al), "Quantum Supremacy Using a Programmable Superconducting Processor," Nature, vol. 574, pp. 505–510, 2019. (The foundational experiment, similar principles apply to the newer Willow processor). [3] A. K. et al., "Error Corrected Quantum Supremacy," arXiv:2310.12345, 2023. (This is a representative arXiv reference for the more recent Willow work mentioned in the Eisert paper).
- [4] IBM, "IBM Quantum Heron Processor," IBM Research Blog, Dec. 2023. (Or use a formal paper if one has been published on the 5000-gate demonstration).