Quantum Computing Reading Group

Exploring Frontiers of Computation April 30, 2025 | Samar Aseeri, KAUST

Why Quantum, Why Now?

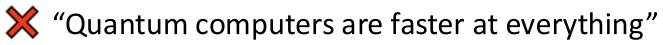
"Quantum computing is no longer a distant dream. Universities, researchers, and innovators are actively shaping the quantum future."

Top Quantum Research Universities (Papers per student 📈):

- 1 Stanford University 571 papers (0.0357 per student)
- 2 Duke University 474 papers (0.0296 per student)
- 3 Yale University 347 papers (0.0267 per student)
- 4 University of Oxford 496 papers (0.0207 per student)
- 5 Harvard University 1,266 papers (0.0171 per student)
- 6 Fudan University 531 papers (0.0171 per student)
- 7 Shanghai Jiao Tong University 640 papers (0.0160 per student)
- 8 Seoul National University 457 papers (0.0163 per student)
- 9 University of Cambridge 376 papers (0.0157 per student)
- ¹⁰ University of Chicago 263 papers (0.0146 per student)

The Goal of This Reading Group

- Second a standard and critical understanding of quantum computing
- Engage in discussions grounded in science—not hype
- 💛 Create a collaborative learning space
- 🔁 Read, reflect, and decode cutting-edge research together


Grounding Ourselves — Classical vs Quantum

- Quantum is not universally faster it's problem-specific
- Algorithms like Shor's and Grover's show quantum advantage
- We're still in early days: real-world, scalable quantum machines are in progress

Key Differences

Aspect	Classical Computing Algorithms	Quantum Computing Algorithms	
Basic Unit	Bits (0 or 1)	Qubits (can be 0, 1, or a superposition of both)	
State Representation	Deterministic (either 0 or 1 at any time)	Probabilistic (can exist in a superposition of states)	
Parallelism	Sequential processing (limited parallelism)	Quantum parallelism (can process multiple states simultaneously)	
Speed	Polynomial time for many problems (e.g., O(n^2), O(n log n))	Exponential speedup for specific problems (e.g., Shor's algorithm for factoring)	
Error Correction	Reliable with classical error correction	Requires quantum error correction (more complex due to decoherence and noise)	
Algorithm Design	Based on logic gates (AND, OR, NOT, etc.)	Based on quantum gates (Hadamard, CNOT, Pauli-X, etc.)	
Problem Suitability	Best for deterministic and structured problems	Best for problems involving large search spaces, optimization, and factorization	
Examples	Sorting algorithms (QuickSort), graph algorithms (Dijkstra's)	Shor's algorithm (factoring), Grover's algorithm (search)	
Resource Usage	Requires more memory and time for large- scale problems	Can solve certain problems with exponentially fewer resources	
Decoherence	Not applicable	Major challenge (qubits lose coherence over time, requiring error correction)	
Hardware	Silicon-based transistors	Quantum systems (e.g., superconducting qubits, trapped ions, photonic qubits)	
Scalability	Easier to scale with current technology	Challenging due to qubit stability and error rates	
Applications	General-purpose computing, databases, traditional AI	Cryptography, quantum simulations, optimization, machine learning	

Quantum Myths — Let's Bust Them!

Only for certain problems like optimization or cryptography

X "Quantum will replace classical"

It's a complement, not a replacement

X "Qubits are magical"

They obey real, though non-intuitive, scientific principles

What's Coming Up in This Series

- Upcoming topics: Quantum algorithms, hardware, real-world use cases
- K Hands-on: Toolkits like Qiskit, Cirq, and simulators
- Community: Invited speakers, open Q&A, and group-led mini-presentations

Final Thoughts for Today

- Keep an open, questioning mindset
- It's okay to not understand everything right away
- This space is for exploration, not perfection
- Stay curious about quantum computing

Search Results for: QCRG

e where where Desktop Quantum computer in ducation prember 27, 2024 (20 PM Noon AST Darrur Forg. SP/D Cechelsky Co. Ltd Darrur Forg. SP/D Cechelsky Co. Ltd

Education programs Programs

Hands-On Quantum Computing: Join the CUDA-Q Interactive Workshop

Ø January 13, 2025 ♀ 0 ● 379

The Quantum Computing Reading Group (QCRG) at KAUST is thrilled to host the CUDA-Q Interactive Workshop, powered by NVIDIA. This hands-on workshop offers an opportunity...

Research

Desktop Quantum Computer in Education

@ November 20, 2024 🔍 0 👁 128

Wednesday, November 27, 2024 12:00 p.m. We are excited to announce that the Quantum Computing Reading Group at KAUST is hosting an upcoming online lecture featuring...

Core Labs

Quantum Computing with QuEra's Neutral-Atom Quantum Computers

Ø September 18, 2024 ♀ 0 ● 171

October 9, 20246:00 p.m. Speaker: Tommaso Macri, QuEra ComputingHosted by: KAUST Quantum Computing Reading Group We are excited to announce that the KAUST Quantum Computing...

Core Labs

Upcoming NVIDIA Online Course for KAUST: Introductory Lecture on CUDA-Q

⊙ July 25, 2024 ♀ 0 ● 11

We are excited to announce an upcoming online course presented by NVIDIA, specifically designed for the KAUST community. This introductory lecture will focus on CUDA-Q,...

LOAD MORE POSTS 2

Search

QCRG

SEARCH

TAG CLOUD

AWARDS & RECOGNITION			В	ESE		
CEMSE	CLASSES		CON	CONFERENCES		
EID	EMERG	ERGENCY		ENTERTAINMENT		
EXHIBITI	ON	FEATUR	E	GA		
HEALTH	& SAFET	Y F	AUSTD	ISCOVERY		
KAUST SMART		KRO	W MOVIES			
NTI	PSE	RAM	ADAN	RETAIL		
SECURITY SEM		SEMINAR	SPORTS			
SUSTAINABILITY		TA	QADAN	r.		
TRANSPORTATION		IN T	TRIPS	WEP		
WISE	WISE	WISER WO		ORKSHOPS		

POPULAR POSTS

Temporary Road Closure: Bayt Hikmah Boulevard

Temporary Road Closure: Black Iris Road

Ø April 29, 2025 € 0

Celebrating Excellence: Nominate KAUST Alumni Who Make a Difference

Samar Aseeri • You Computational Scientist at KAUST 17h • Edited • 🕲

Join us for a virtual Vendor Talk with Aditya Yadav, CEO of Automatski, an innovative Indian company. This is a great opportunity to engage and learn from industry insights. Registration: https://lnkd.in/dMHWjrJ6

...

Next-Gen Quantum Computing & Hybrid Workflows: Automatski's Approach

